Software development for decision-making in the agriculture sector: a systematic literature review
DOI:
https://doi.org/10.20435/multi.v30i75.4735Keywords:
digital agriculture, sustainable development, design science researchAbstract
The objective of this article is to identify the methodologies used for software development applied to agricultural systems, along with their limitations and potential. To achieve this, a systematic literature review was conducted, analyzing 50 articles published between 2012 and 2023. This work aims to contribute to future research on software development in agriculture. It was found that most articles did not employ specific software development methodologies, focusing instead on programming languages. The study highlighted that the use of technology is essential for decision-making, improving productivity, enhancing processes, and reducing costs. However, several challenges hinder its adoption in family farming, such as lack of connectivity, limited access to technology, and a shortage of qualified labor for the digital environment. Thus, there is a research gap in developing software solutions tailored to small and medium-sized rural producers.
References
ALIANE, N.; MUÑOZ, C. Q. G.; SÁNCHEZ-SORIANO, J.. Web and MATLAB-based platform for UAV flight management and multispectral image processing. Sensors, [S. l.], v. 22, n. 11, p. 4243, 2022.
ALVES, R.; MATOS, P. A solution to prevent and minimize the consequences of accidents with farm tractors in the context of mountainous regions with low population density. Sensors, [S. l.], v. 23, n. 18, p. 7811, 2023.
ARAGO, N. et al. Smart dairy cattle farming and in-heat detection through the internet of things (IoT). International Journal of Integrated Engineering, [S. l.], v. 14, n. 1, p. 157-172, 2022.
ARSHAD, J. et al. Deployment of an intelligent and secure cattle health monitoring system. Egyptian Informatics Journal, [S. l.], v. 24, n. 2, p. 265-275, 2023.
BASKERVILLE, R.; BAIYERE, A.; GREGOR, S.; HEVNER, A. Design science research contributions: finding a balance between artifact and theory. Journal of the Association for Information Systems, [S. l.], v. 19, n. 5, p. 358-376, 2018.
BAYANO-TEJERO, S. et al. Machine to machine connections for integral management of the olive production. Computers and Electronics in Agriculture, [S. l.], v. 166, p. 104980, 2019.
BORGES, L. F.; BAZZI, C. L.; SOUZA, E. G.; MAGALHÃES, P. S. G.; MICHELON, G. K. Web software to create thematic maps for precision agriculture. Pesquisa agropecuária brasileira, [S. l.], v. 55, p. e00735, 2020.
CAICEDO-ORTIZ, J. G. et al. Monitoring system for agronomic variables based in WSN technology on cassava crops. Computers and Electronics in Agriculture, [S. l.], v. 145, p. 275-281, 2018.
CAÑADAS, J.; DEL ÁGUILA, I. M.; PALMA, J. Development of a web tool for action threshold evaluation in table grape pest management. Precision agriculture, [S. l.], v. 18, n. 6, p. 974-996, 2017.
CARLSON, B. R.; CARPENTER-BOGGS, L.; HIGGINS, S. S.; NELSON, R.; STOCKLE, C.; WEDDELL, J. Development of a web application for estimating carbon footprints of organic farms. Computers and Electronics in Agriculture, [S. l.], v. 142, p. 211-223, 2017.
CHANG, C. – H. et al. Operational forecasting inundation extents using REOF analysis (FIER) over lower Mekong and its potential economic impact on agriculture. Environmental Modelling & Software, [S. l.], v. 162, p. 105643, 2023.
CHEN, Y.; CHEN, M.; GUO, M.; WANG, J.; ZHENG, N. Pest recognition based on multi-image feature localization and adaptive filtering fusion. Frontiers in Plant Science, [S. l.], v. 14, p. 1282212, 2023.
COFAS, E. Zoosyst-computer system destinated for the analysis of the production potential of ruminant species. 2022.
DAI, D.; XAI, P.; ZHU, Z.; CHE, H. MTDL-EPDCLD: A multi-task deep-learning-based system for enhanced precision detection and diagnosis of corn leaf diseases. Plants, [S. l.], v. 12, n. 13, p. 2433, 2023.
DEBNATH, A. et al. A smartphone-based detection system for tomato leaf disease using efficientNetV2B2 and its explainability with artificial intelligence (AI). Sensors, [S. l.], v. 23, n. 21, p. 8685, 2023.
GINIGE, T.; RICHARDS, D.; GINIGE, A.; HITCHENS, M. Design for empowerment: Empowering Sri Lankan farmers through mobile-based information system. Communications of the Association for Information Systems, [S. l.], v. 46, p. 444-483, 2020.
GONZÁLEZ-ESQUIVA, J. M. GARCÍA-MATEOS, G.; HERNÁNDEZ-HERNÁNDEZ, J. L.; RUIZ-CANALES, A.; ESCARABAJAL-HENERAJOS, D.; MOLINA-MARTÍNEZ, J. M. Web application for analysis of digital photography in the estimation of irrigation requirements for lettuce crops. Agricultural water management, [S. l.], v. 183, p. 136-145, 2017.
HEVNER, A. R.; MARCH, S. T.; PARK, J.; RAM, S. Design science in information systems research. MIS quarterly, [S. l.], v. 28, n. 1, p. 75-105, mar. 2004.
HYUN, S. et al. Development of a mobile computing framework to aid decision-making on organic fertilizer management using a crop growth model. Computers and Electronics in Agriculture, [S. l.], v. 181, p. 105936, 2021.
ISLAM, M. et al. DeepCrop: deep learning-based crop disease prediction with web application. Journal of Agriculture and Food Research, [S. l.], v. 14, p. 100764, 2023.
JAIN, R. K. Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications. Smart Agricultural Technology, [S. l.], v. 4, p. 100215, 2023.
JUHRIYANSYAH, D.; DWI, H.; FIRDAUS, A. Evaluation of peatland suitability for rice cultivation using matching method. Polish Journal of Environmental Studies, [S. l.], v. 30, n. 1, p. 2041-2047, 2021.
KAJORNKASIRAT, S.; RUANGSRI, J.; SUMAT, C.; INTARAMONTRI, P. Online analytics for shrimp farm management to control water quality parameters and growth performance. Sustainability, [S. l.], v. 13, n. 11, p. 1–11, 2021.
KUECHLER, B.; VAISHNAVI, V. On theory development in design science research: anatomy of a research project. European Journal of Information Systems, [S. l.], v. 17, n. 5, p. 489-504, 2008.
KUNDU, N. et al. Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning. Artificial intelligence in agriculture, [S. l.], v. 6, p. 276-291, 2022.
LACERDA, D. P.; DRESCH, A.; PROENÇA, A.; ANTUNES JUNIOR, J. A. V. Design Science Research: A research method to production engineering. Gestão & Produção, São Carlos, v. 20, n. 4, p. 741-761, 2013.
LEE, S.; CHOI, G.; PARK, H. – C.; Choi, C. Automatic classification service system for citrus pest recognition based on deep learning. Sensors, [S. l.], v. 22, n. 22, p. 8911, 2022.
LEKBANGPONG, N. et al. Precise automation and analysis of environmental factor effecting on growth of St. John’s wort. Ieee Access, [S. l.], v. 7, p. 112848-112858, 2019.
LIU, T.; CHEN, W.; WANG, Y.; WU, W.; SUN, C.; DING, J.; GUO, W. Rice and wheat grain counting method and software development based on Android system. Computers and Electronics in Agriculture, [S. l.], v. 141, p. 302-309, sept. 2017.
LI, Z.; QI, Z.; QIANJING, J.; NATHAN, S. An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland. Agricultural Systems, [S. l.], v. 186, p. 102950, 2021.
LIZZONI, L.; FEIDEN, A.; FEIDEN, A. PLAFIR: web application for rural financial planning. Biblios, [S. l.], v. 73, n. 73, p. 91-104, 2018.
MARCH, S. T.; SMITH, G. F. Design and natural science research on information technology. Decision support systems, [S. l.], v. 15, n. 4, p. 251–266, 1995.
MARKUS, M. L.; MAJCHRZAK, A.; GASSER, L. A design theory for systems that support emergent knowledge processes. MIS quarterly, [S. l.], v. 26, n. 3, p. 179-212, 2002.
MEDICI, M.; PEDERSEN, S. M.; CANAVARI, M.; ANKEN, T. A web-tool for calculating the economic performance of precision agriculture technology. Computers and Electronics in Agriculture, [S. l.], v. 181, n. June 2020, p. 105930, 2021.
MONTERO, C. S.; KAPINGA, A. F. Fortalecimento da pesquisa da ciência do design: integração da co-criação e do co-design. In: NIELSEN, P.; KIMARO, H. C. (Ed.). Information and communication technologies for development. Oslo: University of Oslo, 2019. p. 486-495
MORALES, D. A.; SÁNCHEZ-BRAVO, P.; LIPAN, L.; CANO-LAMADRID, M.; ISSA-ISSA, H.; CAMPO-GOMIS, F. J.; LLUCH, D. B. L. Designing of an enterprise resource planning for the optimal management of agricultural plots regarding quality and environmental requirements. Agronomy, [S. l.], v. 10, n. 9, p. 1-22, 2020.
MRÁZ, M. et al. Development of the web application by the information system for data processing and documentation on selected farm in agricultural production. Przeglad Elektrotechniczny, [S. l.], v. 96, n. 1, p. 218-221, 2020.
MUANGPRATHUB, J. BOONNAM., N.; KAJORNKASIRAT, S.; LEKBANGPONG, N.; WANICHSOMBAT, S.; NILLAOR, P. IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, [S. l.], v. 156, n. 9, p. 467-474, jan. 2019.
NDUNAGU, J. N. et al. Development of a Wireless sensor network and iot‐based smart irrigation system. Applied and Environmental Soil Science, [S. l.], v. 2022, n. 1, p. 7678570, 2022.
NI, X. et al. A deep learning-based web application for segmentation and quantification of blueberry internal bruising. Computers and Electronics in Agriculture, [S. l.], v. 201, p. 107200, 2022.
NOVA, N. A.; GONZÁLEZ, R. A. A financial inclusion app and USSD service for farmers in rural Colombia. Information Development, [S. l.], v. 42, n. 3, 2022.
NUNAMAKER JUNIOR, J. F.; CHEN, M.; PURDIN, T. D. M. Systems development in information systems research. Journal of management information systems, [S. l.], v. 7, n. 3, p. 89-106, 1990.
PEFFERS, K.; TUUNANEN, T.; ROTHENBERGER, M.; CHATTERJEE, S. A design science research methodology for information systems research. Journal of management information systems, [S. l.], v. 24, n. 3, p. 45-77, 2007.
PUN, T. B.; NEUPANE, A.; KOECH, R. A deep learning-based decision support tool for plant-parasitic nematode management. Journal of Imaging, [S. l.], v. 9, n. 11, p. 240, 2023.
PUTTINAOVARAT, S.; HORKAEW, P. A geospatial database management system for the collection of medicinal plants. Geospatial Health, [S. l.], v. 16, n. 2, 2021.
RAMOS, A.; FARIA, P. M.; FARIA, Á. Revisão sistemática de literatura: contributo para a inovação na investigação em Ciências da Educação. Revista Diálogo Educacional, Curitiba, v. 14, n. 41, p. 17-36, 2014.
ROSLIN, N. A. CHE’YA, N. N.; ROSLE, R.; ISMAIL, M. R. Smartphone application development for rice field management through aerial imagery and normalised difference vegetation index (Ndvi) analysis. Pertanika Journal of Science and Technology, [S. l.], v. 29, n. 2, p. 809-836, 2021.
ROTUNDO, J. L. et al. Development of a decision-making application for optimum soybean and maize fertilization strategies in Mato Grosso. Computers and Electronics in Agriculture, [S. l.], v. 193, feb. 2022.
SABAN, M. et al. A smart agricultural system based on PLC and a cloud computing web application using LoRa and LoRaWan. Sensors, [S. l.], v. 23, n. 5, p. 2725, 2023.
SAMPAIO, R.; MANCINI, M. Estudos de revisão sistemática : um guia para síntese. Revista Brasileira de Fisioterapia, São Carlos, v. 11, n. 1, p. 83–89, 2007.
SILVA, J. P.; NÄÄS, I. A.; ABE, J. M.; CORDEIRO, A. F. S. Classification of piglet (Sus Scrofa) stress conditions using vocalization pattern and applying paraconsistent logic Eτ. Computers and Electronics in Agriculture, [S. l.], v. 166, p. 105020, 2019.
SIMON, H. A. The Sciences of the Artificial. 3. ed. Cambridge: MIT Press, 1996.
SOLER-MÉNDEZ, M.; PARRAS-BURGOS, D.; BENOUNA-BENNOUNA, R.; MOLINA-MARTÍNEZ, J. M. Agroclimatic Evolution web application as a powerful solution for managing climate data. Scientific Reports, [S. l.], v. 12, n. 1, p. 6716, 2022.
TLHOBOGANG, B.; SETOTO, B. Developing a small-scale agriculture knowledge and information dissemination system: tankyu practice approach. In: INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS, 7., 2018, Yonago. Proceedings […]. Yonago: [S. n.], 2018. p. 244–249.
VENABLE, J.; PRIES-HEJE, J.; BASKERVILLE, R. FEDS: A framework for evaluation in design science research. European Journal of Information Systems, [S. l.], v. 25, n. 1, p. 77-89, 2016.
VINCENTDO, V.; SURANTHA, N. Nutrient film technique-based hydroponic monitoring and controlling system using ANFIS. Electronics, [S. l.], v. 12, n. 6, p. 1446, 2023.
VOURAKI, S.; SKOURTIS, I.; PSICHOS, K.; JONES, W.; DAVIS, C.; JOHNSON, M.; RUPÉREZ, L. R.; THEODORIDIS, A.; ARSENOS, G. A decision support system for economically sustainable sheep and goat farming. Animals, [S. l.], v. 10, n. 12, p. 1-18, 2020.
WALLS, J. G.; WIDMEYER, G. R.; EL SAWY, O. A. Building an information system design theory for vigilant EIS. Information systems research, [S. l.], v. 3, n. 1, p. 36-59, 1992.
WAN, X. – F.; ZHENG, T.; CUI, J.; ZHANG, F.; MA, Z. – Q.; YANG, Y. Near field communication-based agricultural management service systems for family farms. Sensors, [S. l.], v. 19, n. 20, p. 4406, 2019.
WANG, C.; TANG, Y.; AHMAD-AKHIA, M. F.; ABDUL-RAHMAN, H.; YAP, J. B. H. Cloud-Based system for sustainable stingless bee farm. Journal of Internet Technology, [S. l.], v. 23, n. 3, p. 539-551, 2022.
WANG, H. et al. PreCowKetosis: a shiny web application for predicting the risk of ketosis in dairy cows using prenatal indicators. Computers and Electronics in Agriculture, [S. l.], v. 206, p. 107697, 2023.
WECKESSER, F.; BECK, M.; HÜLSBERGEN, K. – J.; PEISL, S. A Digital Advisor Twin for Crop Nitrogen Management. Agriculture, [S. l.], v. 12, n. 2, 2022.
YANG, G.; LEI, L.; PING, G.; MO, L. A flexible decision support system for irrigation scheduling in an irrigation district in China. Agricultural water management, [S. l.], v. 179, p. 378-389, 2017.
YU, Z. et al. Ricemapengine: a google earth engine-based web application for fast paddy rice mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, [S. l.], v. 16, p. 7264-7275, jan. 2023.
ZHAO, Y.; SUN, C.; XU, X.; CHEN, J. RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism. Computers and Electronics in Agriculture, [S. l.], v. 193, p. 106644, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Claudia de Brito Quadros Gonçalves, Madalena Maria Schlindwein

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os artigos publicados na Revista Multitemas têm acesso aberto (Open Access) sob a licença Creative Commons Attribution, que permite uso, distribuição e reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.