Desarrollo de software para la toma de decisiones en el sector agropecuario: una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.20435/multi.v30i75.4735

Palabras clave:

agricultura digital, desarrollo sostenible, design science research

Resumen

El objetivo de este artículo es identificar las metodologías utilizadas para el desarrollo de software aplicadas en sistemas agropecuarios, junto con sus limitaciones y potencialidades. Para ello, se realizó una revisión sistemática de la literatura analizando 50 artículos publicados entre 2012 y 2023. De este modo, este trabajo puede contribuir a investigaciones futuras sobre el desarrollo de software en el sector agropecuario. Se constató que la mayoría de los artículos no emplearon metodologías específicas para el desarrollo de software, limitándose al uso del lenguaje de programación. Se identificó que el uso de tecnología es fundamental para la toma de decisiones, además de incrementar la productividad, mejorar los procesos y reducir los costos. Sin embargo, varios desafíos dificultan su adopción en la agricultura familiar, como la falta de conectividad, acceso limitado a la tecnología y la escasez de mano de obra cualificada para este entorno digital. Así, existe una brecha de investigación para el desarrollo de software orientado a pequeños y medianos productores rurales.

Biografía del autor/a

Claudia de Brito Quadros Gonçalves, Universidade Federal da Grande Dourados (UFGD)

Doutoranda em Agronegócios pela Universidade Federal da Grande Dourados (UFGD). Graduada em Direito pelo Centro Universitário da Grande Dourados (Unigran). Graduada em Ciências Contábeis pela UFGD, atuando principalmente nos seguintes temas: bioeconomia e desenvolvimento sustentável no agronegócio. Exerce a função de contadora na Universidade Estadual de Mato Grosso do Sul (UEMS).

Madalena Maria Schlindwein, Universidade Federal da Grande Dourados (UFGD)

Doutora em Ciências, área de concentração em Economia Aplicada, pela Escola Superior de Agricultura Luiz de Queiroz (Esalq) da Universidade de São Paulo (USP). Mestre em Economia Rural pela Universidade Federal do Ceará (UFC). Graduada em Ciências Econômicas pela Universidade Estadual do Oeste do Paraná (Unioeste). Bolsista de Produtividade em Pesquisa – PQ-2 e coordenadora do Grupo de Pesquisa Bioeconomia e Desenvolvimento Socioeconômico Sustentável. Professora e pesquisadora na UFGD, Faculdade de Administração, Ciências Contábeis e Economia. Professora do Quadro Permanente do Programa de Pós-Graduação em Agronegócios da UFGD, com atuação nos cursos de mestrado e doutorado. 

Citas

ALIANE, N.; MUÑOZ, C. Q. G.; SÁNCHEZ-SORIANO, J.. Web and MATLAB-based platform for UAV flight management and multispectral image processing. Sensors, [S. l.], v. 22, n. 11, p. 4243, 2022.

ALVES, R.; MATOS, P. A solution to prevent and minimize the consequences of accidents with farm tractors in the context of mountainous regions with low population density. Sensors, [S. l.], v. 23, n. 18, p. 7811, 2023.

ARAGO, N. et al. Smart dairy cattle farming and in-heat detection through the internet of things (IoT). International Journal of Integrated Engineering, [S. l.], v. 14, n. 1, p. 157-172, 2022.

ARSHAD, J. et al. Deployment of an intelligent and secure cattle health monitoring system. Egyptian Informatics Journal, [S. l.], v. 24, n. 2, p. 265-275, 2023.

BASKERVILLE, R.; BAIYERE, A.; GREGOR, S.; HEVNER, A. Design science research contributions: finding a balance between artifact and theory. Journal of the Association for Information Systems, [S. l.], v. 19, n. 5, p. 358-376, 2018.

BAYANO-TEJERO, S. et al. Machine to machine connections for integral management of the olive production. Computers and Electronics in Agriculture, [S. l.], v. 166, p. 104980, 2019.

BORGES, L. F.; BAZZI, C. L.; SOUZA, E. G.; MAGALHÃES, P. S. G.; MICHELON, G. K. Web software to create thematic maps for precision agriculture. Pesquisa agropecuária brasileira, [S. l.], v. 55, p. e00735, 2020.

CAICEDO-ORTIZ, J. G. et al. Monitoring system for agronomic variables based in WSN technology on cassava crops. Computers and Electronics in Agriculture, [S. l.], v. 145, p. 275-281, 2018.

CAÑADAS, J.; DEL ÁGUILA, I. M.; PALMA, J. Development of a web tool for action threshold evaluation in table grape pest management. Precision agriculture, [S. l.], v. 18, n. 6, p. 974-996, 2017.

CARLSON, B. R.; CARPENTER-BOGGS, L.; HIGGINS, S. S.; NELSON, R.; STOCKLE, C.; WEDDELL, J. Development of a web application for estimating carbon footprints of organic farms. Computers and Electronics in Agriculture, [S. l.], v. 142, p. 211-223, 2017.

CHANG, C. – H. et al. Operational forecasting inundation extents using REOF analysis (FIER) over lower Mekong and its potential economic impact on agriculture. Environmental Modelling & Software, [S. l.], v. 162, p. 105643, 2023.

CHEN, Y.; CHEN, M.; GUO, M.; WANG, J.; ZHENG, N. Pest recognition based on multi-image feature localization and adaptive filtering fusion. Frontiers in Plant Science, [S. l.], v. 14, p. 1282212, 2023.

COFAS, E. Zoosyst-computer system destinated for the analysis of the production potential of ruminant species. 2022.

DAI, D.; XAI, P.; ZHU, Z.; CHE, H. MTDL-EPDCLD: A multi-task deep-learning-based system for enhanced precision detection and diagnosis of corn leaf diseases. Plants, [S. l.], v. 12, n. 13, p. 2433, 2023.

DEBNATH, A. et al. A smartphone-based detection system for tomato leaf disease using efficientNetV2B2 and its explainability with artificial intelligence (AI). Sensors, [S. l.], v. 23, n. 21, p. 8685, 2023.

GINIGE, T.; RICHARDS, D.; GINIGE, A.; HITCHENS, M. Design for empowerment: Empowering Sri Lankan farmers through mobile-based information system. Communications of the Association for Information Systems, [S. l.], v. 46, p. 444-483, 2020.

GONZÁLEZ-ESQUIVA, J. M. GARCÍA-MATEOS, G.; HERNÁNDEZ-HERNÁNDEZ, J. L.; RUIZ-CANALES, A.; ESCARABAJAL-HENERAJOS, D.; MOLINA-MARTÍNEZ, J. M. Web application for analysis of digital photography in the estimation of irrigation requirements for lettuce crops. Agricultural water management, [S. l.], v. 183, p. 136-145, 2017.

HEVNER, A. R.; MARCH, S. T.; PARK, J.; RAM, S. Design science in information systems research. MIS quarterly, [S. l.], v. 28, n. 1, p. 75-105, mar. 2004.

HYUN, S. et al. Development of a mobile computing framework to aid decision-making on organic fertilizer management using a crop growth model. Computers and Electronics in Agriculture, [S. l.], v. 181, p. 105936, 2021.

ISLAM, M. et al. DeepCrop: deep learning-based crop disease prediction with web application. Journal of Agriculture and Food Research, [S. l.], v. 14, p. 100764, 2023.

JAIN, R. K. Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications. Smart Agricultural Technology, [S. l.], v. 4, p. 100215, 2023.

JUHRIYANSYAH, D.; DWI, H.; FIRDAUS, A. Evaluation of peatland suitability for rice cultivation using matching method. Polish Journal of Environmental Studies, [S. l.], v. 30, n. 1, p. 2041-2047, 2021.

KAJORNKASIRAT, S.; RUANGSRI, J.; SUMAT, C.; INTARAMONTRI, P. Online analytics for shrimp farm management to control water quality parameters and growth performance. Sustainability, [S. l.], v. 13, n. 11, p. 1–11, 2021.

KUECHLER, B.; VAISHNAVI, V. On theory development in design science research: anatomy of a research project. European Journal of Information Systems, [S. l.], v. 17, n. 5, p. 489-504, 2008.

KUNDU, N. et al. Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning. Artificial intelligence in agriculture, [S. l.], v. 6, p. 276-291, 2022.

LACERDA, D. P.; DRESCH, A.; PROENÇA, A.; ANTUNES JUNIOR, J. A. V. Design Science Research: A research method to production engineering. Gestão & Produção, São Carlos, v. 20, n. 4, p. 741-761, 2013.

LEE, S.; CHOI, G.; PARK, H. – C.; Choi, C. Automatic classification service system for citrus pest recognition based on deep learning. Sensors, [S. l.], v. 22, n. 22, p. 8911, 2022.

LEKBANGPONG, N. et al. Precise automation and analysis of environmental factor effecting on growth of St. John’s wort. Ieee Access, [S. l.], v. 7, p. 112848-112858, 2019.

LIU, T.; CHEN, W.; WANG, Y.; WU, W.; SUN, C.; DING, J.; GUO, W. Rice and wheat grain counting method and software development based on Android system. Computers and Electronics in Agriculture, [S. l.], v. 141, p. 302-309, sept. 2017.

LI, Z.; QI, Z.; QIANJING, J.; NATHAN, S. An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland. Agricultural Systems, [S. l.], v. 186, p. 102950, 2021.

LIZZONI, L.; FEIDEN, A.; FEIDEN, A. PLAFIR: web application for rural financial planning. Biblios, [S. l.], v. 73, n. 73, p. 91-104, 2018.

MARCH, S. T.; SMITH, G. F. Design and natural science research on information technology. Decision support systems, [S. l.], v. 15, n. 4, p. 251–266, 1995.

MARKUS, M. L.; MAJCHRZAK, A.; GASSER, L. A design theory for systems that support emergent knowledge processes. MIS quarterly, [S. l.], v. 26, n. 3, p. 179-212, 2002.

MEDICI, M.; PEDERSEN, S. M.; CANAVARI, M.; ANKEN, T. A web-tool for calculating the economic performance of precision agriculture technology. Computers and Electronics in Agriculture, [S. l.], v. 181, n. June 2020, p. 105930, 2021.

MONTERO, C. S.; KAPINGA, A. F. Fortalecimento da pesquisa da ciência do design: integração da co-criação e do co-design. In: NIELSEN, P.; KIMARO, H. C. (Ed.). Information and communication technologies for development. Oslo: University of Oslo, 2019. p. 486-495

MORALES, D. A.; SÁNCHEZ-BRAVO, P.; LIPAN, L.; CANO-LAMADRID, M.; ISSA-ISSA, H.; CAMPO-GOMIS, F. J.; LLUCH, D. B. L. Designing of an enterprise resource planning for the optimal management of agricultural plots regarding quality and environmental requirements. Agronomy, [S. l.], v. 10, n. 9, p. 1-22, 2020.

MRÁZ, M. et al. Development of the web application by the information system for data processing and documentation on selected farm in agricultural production. Przeglad Elektrotechniczny, [S. l.], v. 96, n. 1, p. 218-221, 2020.

MUANGPRATHUB, J. BOONNAM., N.; KAJORNKASIRAT, S.; LEKBANGPONG, N.; WANICHSOMBAT, S.; NILLAOR, P. IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, [S. l.], v. 156, n. 9, p. 467-474, jan. 2019.

NDUNAGU, J. N. et al. Development of a Wireless sensor network and iot‐based smart irrigation system. Applied and Environmental Soil Science, [S. l.], v. 2022, n. 1, p. 7678570, 2022.

NI, X. et al. A deep learning-based web application for segmentation and quantification of blueberry internal bruising. Computers and Electronics in Agriculture, [S. l.], v. 201, p. 107200, 2022.

NOVA, N. A.; GONZÁLEZ, R. A. A financial inclusion app and USSD service for farmers in rural Colombia. Information Development, [S. l.], v. 42, n. 3, 2022.

NUNAMAKER JUNIOR, J. F.; CHEN, M.; PURDIN, T. D. M. Systems development in information systems research. Journal of management information systems, [S. l.], v. 7, n. 3, p. 89-106, 1990.

PEFFERS, K.; TUUNANEN, T.; ROTHENBERGER, M.; CHATTERJEE, S. A design science research methodology for information systems research. Journal of management information systems, [S. l.], v. 24, n. 3, p. 45-77, 2007.

PUN, T. B.; NEUPANE, A.; KOECH, R. A deep learning-based decision support tool for plant-parasitic nematode management. Journal of Imaging, [S. l.], v. 9, n. 11, p. 240, 2023.

PUTTINAOVARAT, S.; HORKAEW, P. A geospatial database management system for the collection of medicinal plants. Geospatial Health, [S. l.], v. 16, n. 2, 2021.

RAMOS, A.; FARIA, P. M.; FARIA, Á. Revisão sistemática de literatura: contributo para a inovação na investigação em Ciências da Educação. Revista Diálogo Educacional, Curitiba, v. 14, n. 41, p. 17-36, 2014.

ROSLIN, N. A. CHE’YA, N. N.; ROSLE, R.; ISMAIL, M. R. Smartphone application development for rice field management through aerial imagery and normalised difference vegetation index (Ndvi) analysis. Pertanika Journal of Science and Technology, [S. l.], v. 29, n. 2, p. 809-836, 2021.

ROTUNDO, J. L. et al. Development of a decision-making application for optimum soybean and maize fertilization strategies in Mato Grosso. Computers and Electronics in Agriculture, [S. l.], v. 193, feb. 2022.

SABAN, M. et al. A smart agricultural system based on PLC and a cloud computing web application using LoRa and LoRaWan. Sensors, [S. l.], v. 23, n. 5, p. 2725, 2023.

SAMPAIO, R.; MANCINI, M. Estudos de revisão sistemática : um guia para síntese. Revista Brasileira de Fisioterapia, São Carlos, v. 11, n. 1, p. 83–89, 2007.

SILVA, J. P.; NÄÄS, I. A.; ABE, J. M.; CORDEIRO, A. F. S. Classification of piglet (Sus Scrofa) stress conditions using vocalization pattern and applying paraconsistent logic Eτ. Computers and Electronics in Agriculture, [S. l.], v. 166, p. 105020, 2019.

SIMON, H. A. The Sciences of the Artificial. 3. ed. Cambridge: MIT Press, 1996.

SOLER-MÉNDEZ, M.; PARRAS-BURGOS, D.; BENOUNA-BENNOUNA, R.; MOLINA-MARTÍNEZ, J. M. Agroclimatic Evolution web application as a powerful solution for managing climate data. Scientific Reports, [S. l.], v. 12, n. 1, p. 6716, 2022.

TLHOBOGANG, B.; SETOTO, B. Developing a small-scale agriculture knowledge and information dissemination system: tankyu practice approach. In: INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS, 7., 2018, Yonago. Proceedings […]. Yonago: [S. n.], 2018. p. 244–249.

VENABLE, J.; PRIES-HEJE, J.; BASKERVILLE, R. FEDS: A framework for evaluation in design science research. European Journal of Information Systems, [S. l.], v. 25, n. 1, p. 77-89, 2016.

VINCENTDO, V.; SURANTHA, N. Nutrient film technique-based hydroponic monitoring and controlling system using ANFIS. Electronics, [S. l.], v. 12, n. 6, p. 1446, 2023.

VOURAKI, S.; SKOURTIS, I.; PSICHOS, K.; JONES, W.; DAVIS, C.; JOHNSON, M.; RUPÉREZ, L. R.; THEODORIDIS, A.; ARSENOS, G. A decision support system for economically sustainable sheep and goat farming. Animals, [S. l.], v. 10, n. 12, p. 1-18, 2020.

WALLS, J. G.; WIDMEYER, G. R.; EL SAWY, O. A. Building an information system design theory for vigilant EIS. Information systems research, [S. l.], v. 3, n. 1, p. 36-59, 1992.

WAN, X. – F.; ZHENG, T.; CUI, J.; ZHANG, F.; MA, Z. – Q.; YANG, Y. Near field communication-based agricultural management service systems for family farms. Sensors, [S. l.], v. 19, n. 20, p. 4406, 2019.

WANG, C.; TANG, Y.; AHMAD-AKHIA, M. F.; ABDUL-RAHMAN, H.; YAP, J. B. H. Cloud-Based system for sustainable stingless bee farm. Journal of Internet Technology, [S. l.], v. 23, n. 3, p. 539-551, 2022.

WANG, H. et al. PreCowKetosis: a shiny web application for predicting the risk of ketosis in dairy cows using prenatal indicators. Computers and Electronics in Agriculture, [S. l.], v. 206, p. 107697, 2023.

WECKESSER, F.; BECK, M.; HÜLSBERGEN, K. – J.; PEISL, S. A Digital Advisor Twin for Crop Nitrogen Management. Agriculture, [S. l.], v. 12, n. 2, 2022.

YANG, G.; LEI, L.; PING, G.; MO, L. A flexible decision support system for irrigation scheduling in an irrigation district in China. Agricultural water management, [S. l.], v. 179, p. 378-389, 2017.

YU, Z. et al. Ricemapengine: a google earth engine-based web application for fast paddy rice mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, [S. l.], v. 16, p. 7264-7275, jan. 2023.

ZHAO, Y.; SUN, C.; XU, X.; CHEN, J. RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism. Computers and Electronics in Agriculture, [S. l.], v. 193, p. 106644, 2022.

Publicado

2025-09-29

Cómo citar

Gonçalves, C. de B. Q., & Schlindwein, M. M. (2025). Desarrollo de software para la toma de decisiones en el sector agropecuario: una revisión sistemática de la literatura. Multitemas, 30(75). https://doi.org/10.20435/multi.v30i75.4735